How to Find Organometallic and Coordination Compounds in Reaxys

March 2013
Table of Contents

Introduction
- Introduction ... 1
- Searching Tips .. 2
- Reaxys Diagram .. 3

Structure Queries
- Use **Generate Structure from Name** 5
- Structure Editors .. 6
- MarvinSketch ... 7
- Managing Substitution .. 8
- Atom Lists ... 9
- Viewing Results ... 10
- Link Nodes ... 11
- Reaxys Generics .. 12
- Use Templates .. 13
- Position Variation bond .. 14
- Filter by Substance .. 15
- Bond Type ... 16
- Bond Topology ... 17

Search Using Molecular Formula or Name
- Chemical Name Search .. 18
- Molecular Formula Search ... 19

The Ligand Search Fields
- The ligand Search Fields ... 20
- Ligand Codes ... 21
- Ligand Fields Search Examples ... 22
Practice Exercises

List of Exercises... 25
Use Generate Structure from Name... 26
Use the Chemical Name field.. 27
Use the Chemical Name field.. 28
Use the Molecular formula field.. 29
Draw a query for metal/CP complexes..................................... 30
Draw a query for Grubb’s Catalysts... 33
Draw a query for coordination complexes................................. 35
Quick Reference... 38
Introduction

The data, structures, and reactions for organometallic and coordination compounds in Reaxys come from the literature and patents.

Information from the literature - information covering the literature from 1817-1975 was originally obtained from the *Gmelin Handbook of Inorganic and Organometallic Chemistry*, (including all main volumes and supplements). Information from 1976 to the present has been extracted from selected inorganic, organometallic, physical chemistry, and solid state journals.

Information from patents - The historical **patent information** covers patents from the early 1800’s to about 1980. The information abstracted from those patents includes substance and reaction data, and patent citation information (patent assignee, authors, patent number, patent year, and country code).

The **in-depth** patent information covers patents from about 1976 to the present. These patents are English language patents from World, US, and European patent offices. In addition to the type of information mentioned in the previous paragraph, also included are all patent family members (all patent numbers and application numbers for an indexed patent), Markush substance display, prophetic substances*, and patent classification codes.

The Substances

Organometallic compounds contain at least 1 carbon bonded to at least 1metal/metaloid.

Coordination compounds contain at least one metal bonded to another atom by a coordinate covalent bond.

Organometallic compounds and coordination compounds with known manner of ligand coordination are stored with the complete formula and structure, e.g., Fe(C5H5)2

Organometallic salts and ionic coordination compounds with known manner of ligand coordination are divided into cations and anions. The complete structures of the ions are available, e.g., [Co(NH3)6](3+)*3Cl(1-)= [Co(NH3)6]Cl3.

Organometallic compounds and coordination compounds with unknown manner of ligand coordination are divided into fragments by separating all ligands from the metal center, e.g., If there is an unknown coordination of thiocyanate to Co(3+) in [Co(NH3)5(SCN)]Cl2 (coordination by N or S atom possible), the formula is given as Co(3+)*5NH3*SCN(1-)*2Cl(1-)= [Co(NH3)5 (SCN)]Cl2. The separated fragments are available with their structures.
Searching Tips

The preferred way to search for **specific organometallic and coordination compounds** is by structure. You can either use the Reaxys functionality to generate the structure by name or you can use a structure editor to draw the substance.

Searching by **name** and searching by **formula** will most likely yield relevant results, but you may also be missing results that would have been obtained with a structure search.

Searching by **name** is less preferred than by structure because not all compounds have complete names. The names found in Reaxys are extracted exactly as the authors of the original documents spelled them. In some cases names may be ambiguous, non-systematic or simply not available at all.

Searching by **formula** is less preferred than by structure because a formula search can be very broad and might result in a large number of hits. Searching with a very specific formula is preferred over searching with formula ranges or searching with wildcards.

Searching by **Ligand formula** will yield relevant results, but new Reaxys users may prefer using a structure, name, or formula search at first.

Please don’t forget the **Reaxys Help** file. This contains information such as tips for using Reaxys with different **structure editors** and details about the **Reaxys Generics**.
How to Find Organometallic and Coordination Compounds in Reaxys

The Reaxys Query page

Select the context of the query

Create an advanced search using the Reaxys data-structure

Click to open a data form.

Save queries as xml files. Load saved xml files or txt files (i.e., list of CAS numbers or chemical names)

Enter a chemical identifier and then click "Submit"
The Create Structure Template from Name feature enables you to create a query structure without having to draw it.

You can enter a chemical name (e.g., zinc phthalocyanine), a trade/trivial name or abbreviation (e.g., ZnPc), a CAS number (e.g., 14320-04-8), a smiles string, or an InChi key to generate the structure.

A dropdown menu with the operators is, starts with, ends with, and contains, along with the wildcard (*), gives you some flexibility when using this feature.

If several structures are relevant to your entry, a list sorted by Number of References appears so that you can select one substance.
Structure Editors

- Structural queries can consist of complete structures or fragments and can contain **atom** and **bond** query features.

- There are 2 structure editors that come with Reaxys and require no installation: MarvinSketch and Elemental, shown on the left.

- Reaxys can also be used with the 5 structure editors shown on the right. Connection software is required and can be downloaded from the Reaxys infosite. www.reaxys.com/info/support_downloads.

- **MarvinSketch** will be used for the examples in this document.

- Consult the **Reaxys Help file** for more drawing tips.
• Frequently used tools are show above.

• Right-clicking an atom, bond, or in the white space will display different menus.

• Both the Rectangle Selection tool and the Lasso Selection tool will select an atom, bond, or the whole structure.

• The Structure Selection tool will only select the entire structure.

• There are 2 ways to change the size of the display using the menus: Options>Zoom and View>Transform>Zoom.

• To Move a structure, first select it, then hover over it until you see a blue box, and then drag with the mouse.

• To Rotate a structure, first select it, then hover over it until you see a blue pinwheel, and then drag with the mouse.
Managing Substitution

Use Substitution Counts – Find copper diaza compounds by specifying the allowed number of substituents on the copper atom.

- Manage substitution by opening up a site to the maximum number of substituents or to a specific number of substituents. Substitution can also be blocked at a specific site.

- **Maximum free sites** – This designation will retrieve up to the maximum number of allowed substituents on an atom. Use the Lasso select tool, click the atom and then type `.s-6` from the keyboard (in succession, not simultaneously). Set the Query Options to As Drawn in Reaxys.

- **Specific number of free sites** – In the example above, the atom labeled s3 meaning it can have a maximum of 3 substituents. The copper already has 2 substituents (the 2 N’s), so choosing s3 with result in substances with 1 additional substituent (or possibly, no additional substituents). To do this use the Lasso select tool to click the atom and then type `.s-3` from the keyboard. Set the Query Options to As Drawn in Reaxys.

- **Prevent Substitution at a specific site** – Retrieve substances with substitution anywhere except on a specified site. Use the Lasso Select tool, click the atom and then type `.s-`* from the keyboard. Set the Query Options to Substructure on all atoms.
Use Atom Lists – Find coordination complexes of the antibiotic Norfloxacin, limiting the metals to Mn, Co, Pt, V, Cu, and Ag using an Atom List fragment.

- Atom lists can be used to include or exclude certain atoms on a certain site.
- Atom Lists can replace an atom, or a list can stand on its own as a separate fragment.
- Draw the structure for Norfloxacin (or use Generate Structure from Name). Use the Template Bar to draw the rings. Add the appropriate atoms and bonds.
- Create the Atom List: Select the More button, click Atom List to include atoms (Use the Not button when you want to exclude atoms). Select Mn, Co, Pt, V, Cu, Ag from the table. Click Close.
- Open substitution on the 4-oxo, the OH of the carboxy and on the list by clicking in the white space and typing .-s-6 from the keyboard, and then clicking the appropriate atoms.
- Click the Transfer Query button in MarvinSketch.
- Select options for Query Type and Number of Fragments in Reaxys: click As Drawn. Click Further Options link. Type 1 in the box for Number of Fragments. Click Search.
Viewing Results

- The results appear in Table view by default. Click the tab for Grid view to see substances without details.

- Substances are displayed with 9 per page by default. Change this by clicking the My Settings button and selecting Modify Application Settings and then changing the number next to Hits per page.

- You can enlarge the substance display by clicking Zoom.

- You can view a substance in 3D: most organometallic and coordination compounds can be viewed in Reaxys by simply clicking the magnifying glass under a substance and then dragging the mouse in the Zoom box.

- If you find a structure that is not displayed in 3D in the zoom box, you can generate the 3D display by right-clicking near the zoomed structure and selecting Structure>Clean 3D.
Use Link Nodes – Find copper diaza rings of varying size using Link nodes.

- **Link Nodes** are used to define repeating units.
- The units can be rings or chains.
- The **Link Node** is the atom that is selected. Anything within the brackets of the Link Node will be repeated.
- Create the copper diaza query above. Use the **As Drawn** query option in Reaxys.
The Reaxys Generic Groups provide you with abbreviations so that you can generalize your queries.

The Generics are divided into Atom Generics and Group Generics.

All symbols ending in "H" allow for hydrogen in addition to the defined atom or group. For example, ALK is the abbreviation for an alkyl group. The abbreviation ALH would allow an alkyl group or a hydrogen atom.

The groups are hierarchically ordered starting with G as any group.

G* and GH* are the only generics that allow ring closure at the site.

For detailed information, consult the Reaxys Help file.

G and G* can have multiple attachment points to the structure. Other predefined generic groups can have only one attachment point to the structure.

Predefined generic groups can only have one bond to the parent structure.
Use Templates and Generics

Use Reaxys Generics and Templates - Find coordination compounds of 18-crown-6 ethers using Reaxys Generics and templates.

- For the example above, follow these steps:

1. Select Templates>Template Library, click Crown Ethers in the list, and select the template for 18-crown-6. Click Close.

2. Click the “r” to open the Generics, select M, click Close, and click in the middle of the crown ether.

3. Use the Single Bond tool to connect the oxygens to the metal.

4. Click the Transfer Query button in MarvinSketch

5. In Reaxys, set the Query Options to Substructure on heteroatoms and check the box for No Salts.

6. Click Search.
Position Variation Bond

Use Position Variation Bond – Find preparations for biphenyl compounds with boryl- and silyl substitution anywhere on the rings using the Position Variation bond.

- The Position Variation bond is used to allow specific substitution on a ring without specifying the exact location on the ring.
- The substitution can be left as a carbon or changed to another atom, a functional group, a list of atoms, or a ring. Use substitution labels as described on pg 8.
- To apply the Position Variation bond, use the Lasso Select tool to encircle the relevant atoms, right-click in the white space, and select Edit Structure>Add>Position Variation bond.
- For the example above, draw the biphenyl, apply the Position Variation bonds, and add an atom list for B and Si to the bonds. Transfer the query to Reaxys. If your query appears in the Substance Query tab, you can copy it to the Reactions tab by clicking the Copy to Reactions tab button below the structure.
- In the Reactions Query tab, select Substructure on all atoms and put a check in the box for No Additional Rings (this prevents ring closure around the core).
Use the Substructure Filter – Filter the list to include only reactions with products that contain both boryl- and silyl- substituents using the Substructure Filter. Save the list.

- About 251 reactions were retrieved in the previous search. Do any of these reactions have products containing both boryl- and silyl- substituents? You can filter a list by structure to include or exclude elements or structures.
- Click the filter for Substructure.
- To add B and Si to the filter box, double click the structure box to open MarvinSketch.
- Click the More button to access the periodic table. Click B. Click close, then click in the white space. Repeat with Si. Transfer to the filter box by clicking Transfer query.
- In the filter box, select Product and Substructure on all atoms. Click Limit to.
- About 11 reactions are retrieved. Notice the Breadcrumbs at the top. If you want to return to the unfiltered list, click the breadcrumb with 251 reactions.
- Save lists by clicking the History button at the top. Click the link for Store.
Use Bond Type – Find cyclopentadienyl-palladium complexes using **Single or Double Bonds** on the \(\text{Cp} \) ring to ensure that no substances are missed.

- Bonds can be designated as several types of bonds, such as **Any Bonds**, and **Single or Double Bonds**. Reaxys will retrieve hits with only that type of bond.

- Different **Bond Types** can be used multiple times in one query.

- For the example above: 1. Click the **cyclopentane template**. 2. Use the **Structure Selection** tool to select the ring. 3. From the **Object** menu, select **Bond>Type>Single or Double**. 4. Use the **Single Bond tool** to add 5 bonds to the structure. 5. Use the **Lasso Select tool** to click and drag each bond to a common point. 6. Click the **More** button, select **Pd**, click **Close**. Click the common point of the structure.

- Click the **Transfer Query** button in MarvinSketch.

- Set the **Query Options** to **Substructure on all atoms** in Reaxys
Use Bond Topology – Find preparations of organometallic compounds with butyllithium as the catalyst. Designate bonds as being part of a ring or part of a chain using Bond Topology.

- Bond Topology is a convenient way to generalize part of a query.

- For the example above: 1. Draw the core structure using the Single bond tool. 2. Use the Lasso Select tool to encircle 2 of the bonds to select them. From the Object menu, select Bond>Topology>Ring. 3. Select the other 2 bonds. From the Object menu, select Bond>Topology>chain. 4. Select the middle “C” atom and then click the More button. Click Atom List and select Sn, Pb, and Ge.

- Click the Transfer Query button in MarvinSketch.

- Set the Query Options to Product and Substructure on all atoms in Reaxys. Click Search.

- In the results, click Filter by Reagent/Catalyst. Click the More link at the bottom of the filter box, and then select the relevant Li-containing reagents. Click Limit to.
Use the Chemical Name field

- The Chemical Name field can be queried from the Reaction Data Form and from the Names & formulas form on the Standard tab. Look for the same fields on the Advanced tab, too.

- A dropdown menu with the operators is, starts with, ends with, and contains, along with the wildcard (*), gives you some flexibility when using the Name fields.

- Alternatively, click the Lookup link to open the index. From the Index, you can type a word, select the appropriate word or words from the list (use the control or shift key), and then click the Transfer button.
Search by Molecular Formula

• The *Molecular Formula* field can be queried from the *Names & Formulas* form on the *standard* query page. Type the formula into the box*.

• It is not necessary to write the formula in Hill order.

• An element without a number is assumed to have a quantity of one.

• Use *Ranges* or a *Wildcard* when needed.

• Though “C”, “H”, and some elements may be written in either upper case or lower case, other elements must be written with the first letter in upper case and the second letter in lower case. For example lower case “ni” will be interpreted as nitrogen and iodine, but when it is written as “Ni” it will be interpreted as nickel.

• *Alternatively, click the grey box near the molecular formula box to open the index. From the index you can type, select the appropriate formula or formulas from the list (use the *control* or *shift* key), and then click the *Transfer* button (as shown in the previous chapter)*.
The ligand fields are divided into **one-center ligands** and **multi-center ligands**. A **one-center ligand** has at least one non-metal atom bound to one metal atom. A **multi-center ligand** has at least 1 non-metal atom bound to at least 2 metal atoms.

Multi-center ligands are indexed in Reaxys as both multi-center ligands and as individual one-center ligands.

These fields are powerful tools for finding ligand-metal complexes.

They are different from the other molecular formula fields in Reaxys because they use **Ligand Codes**, rather than element symbols.
Ligand Codes

Use these field codes when setting up your queries:

<table>
<thead>
<tr>
<th>Code</th>
<th>Atom(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>B, Si, Ge</td>
</tr>
<tr>
<td>D</td>
<td>N, P, As, Sb</td>
</tr>
<tr>
<td>Q</td>
<td>O, S, Se, Te</td>
</tr>
<tr>
<td>X</td>
<td>H, F, Cl, Br, I, At</td>
</tr>
</tbody>
</table>

There are also “special” ligand fields:

<table>
<thead>
<tr>
<th>Code</th>
<th>CO</th>
<th>CS</th>
<th>CN</th>
<th>CNS</th>
<th>CNO</th>
<th>CNR*</th>
</tr>
</thead>
</table>

- Each type of ligand can be searched using the fields: **Base Formula, Formula, Count**.

Base formula – This is the abstract formula of the coordination center(s) and all ligand codes of a compound. The ordering of the formula is as follows:

1. all metal centers (ordered alphabetically)
2. the ligand codes are ordered in the following manner:
 - A, CN, CNO, CNR, CNS, CO, CS, D, L, Q, X
3. within the same ligand types, they are ordered on ascending denticity and the frequency is not taken into consideration

Formula – The ligand formula field contains the ligand codes which describe the elements (in groups) and the number of the atoms that are connected to the central metal atom(s). A ligand formula is given for all structured compounds or fragments which contain at least one metal atom and at least one coordinating ligand atom of the classes "L, A, D, Q, X" or a special ligand (for special ligands, the substituent R has no further bond to metal atoms). The denticity of a ligand is put in parentheses in front of the ligand code. If a ligand is described by >1 code, they are ordered alphabetically and the denticity of the code is put in parentheses in front of the code.

Count – The frequency of a certain ligand within the compound is indexed in this field.

Note: The ligand formula field (LIGO.FORM) describes only the denticity of the ligand not the connectivity to the metal center(s).
Ligand Fields Search Examples

Examples:

<table>
<thead>
<tr>
<th>Search for:</th>
<th>Use this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexa carbonyl chromium</td>
<td>Cr{CO} 6</td>
</tr>
<tr>
<td>tetra halogeno palladium compounds</td>
<td>Pd{X}4</td>
</tr>
<tr>
<td>nickel complex with two tridentate ligands connecting by one pnictide and two chalcogenide atoms</td>
<td>Ni{D(2)Q}2</td>
</tr>
</tbody>
</table>

Examples:

<table>
<thead>
<tr>
<th>Search for:</th>
<th>Use this code:</th>
</tr>
</thead>
<tbody>
<tr>
<td>halogenid or hydride ligand</td>
<td>X</td>
</tr>
<tr>
<td>μ-halogenide or μ-hydride ligand</td>
<td></td>
</tr>
<tr>
<td>ligand connecting by two halogenide or hydride atoms e.g. η²-hydrogen, η²-BH4</td>
<td>(2)X</td>
</tr>
<tr>
<td>(monodentate) carbonyl</td>
<td>CO</td>
</tr>
<tr>
<td>ligand connecting by C and chalcogen e.g. μ-η²-carbonyl (by C and O)</td>
<td>LQ</td>
</tr>
<tr>
<td>Ligand connecting by four pnictide Atoms e.g. porphyrins, phthalocyanines, tetraaza-cyclam</td>
<td>(4)D</td>
</tr>
<tr>
<td>ligand connecting by five C atoms to one or more metal centers e.g. η⁵-cyclopentadienyl</td>
<td>(5)L</td>
</tr>
<tr>
<td>ligand connecting to metal(s) by C e.g. μ-carbonyl (only by C), bridged alkyl-, η² alken-, η²-alkin ligands</td>
<td>(2)L</td>
</tr>
</tbody>
</table>

The hit sets will contain mono - as well as poly-nuclear complexes.
Ligand Fields Search Examples, continued…

<table>
<thead>
<tr>
<th>Query</th>
<th>Example Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Find substances where aluminum is bonded to 2 carbons and a CN</td>
<td></td>
</tr>
<tr>
<td>Query is LIGO.BASE = ‘Al(CN){l}2’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum Bonded to 2 carbons and one cyano</td>
</tr>
</tbody>
</table>

2. Find substances where any metal is bonded to at least one C and at least one CO.	![Diagram](image2.png)
Query is LIGO.FORM = 'l' AND LIGO.FORM = 'co'	
	Any metal bonded to at least one CO and at least one C

3. Find substances where iron is bonded to a five-membered carbon ring, 2 CO’s, and one C.	![Diagram](image3.png)
Query is LIGO.BASE = 'Fe{(5)L}{CO}2{L}'	
	Any metal bonded to at least one CO and at least one C
4. Find substances where iron is bonded to at least one CO, at least one C, and also bonded to anything else.

Query is:
LIGO.BASE = 'fe*' AND LIGO.FORM = 'l' AND LIGO.FORM = 'co'

<table>
<thead>
<tr>
<th>Query</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Find substances where iron is bonded to at least one CO, at least one C, and also bonded to anything else.</td>
<td></td>
</tr>
</tbody>
</table>
I. Use **Generate Structure from Name** to find the structure for potassium ferrocyanide, selecting the structure with the greatest number of references for your query. Run the search using "As drawn" as the search type. View the result in 3D. Use the animation feature to rotate the structure.

II. Use the **Chemical Name** field to find all substances with *bromoferrocene* in the name.

III. Use the **Chemical Name** field to find *ferrocene carboxamide*, *ferrocene carboxaldehyde*, and *ferrocene methylamine* with one query, keeping in mind that these chemical names can also be spelled without the space between words.

IV. Use the **Molecular Formula** field to find substances containing cobalt, 10-15 carbons, 10-30 Hydrogens, 1-3 Nitrogens and anything else.

V. **Draw a query with 2 cyclopentadienyls** that will include the 3 substances below in the results. Draw the parent and use atom and bond query features as needed.

VI. Draw a query to retrieve **Grubb's Catalysts**.

VII. Find coordination complexes involving the heteroatoms of Salen and a metal. Allow a substituted methyl to appear on any location of the 2 rings.
Exercise 1	Use **Create Structure Template from Name**
Find the structure for potassium ferrocyanide, selecting the structure with the greatest number of references for your query. Run the search using “As drawn” as the search type. View the result in 3D. Use the animation feature to rotate the structure.	

1. Click the **Create Structure Template from Name** link.

2. Type potassium ferrocyanide. Click **Submit**.

3. Click **Submit** under the first structure in the list.

4. Click **Search**

5. Left click the magnifying glass.

6. Drag with the mouse to move the structure.

7. Right click and select **Animation> Play**. To control the **angle** and **speed** of the animation, click and drag the mouse near the structure. You can drag quickly or slowly and in different directions. To change the look of the molecule, select **Display**
<table>
<thead>
<tr>
<th>Use the Chemical Name field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise II</td>
</tr>
<tr>
<td>Use the Chemical Name field to find all substances with bromoferrrocene in the name.</td>
</tr>
</tbody>
</table>

1. Type **bromoferrrocene** into the **Chemical Name** field on the **Names & Formulas** form. Select **contains** from the dropdown menu. Click ok.

![Names & Formulas](image)

2. Click **Search**
Practice Exercises – Use the Chemical Name Field

Exercise III

Use the Chemical Name field to find ferrocene carboxamide, ferrocene carboxaldehyde, and ferrocene methylamine with one query, keeping in mind that these chemical names can also be spelled without the space between words.

1. Click the Lookup link next to the Chemical Name field on the the Names & Formulas form.

2. Type *ferrocene carboxaldehyde* into the box. Click on this name in the list.

3. Ferrocene carboxamide appears below ferrocene carboxaldehyde. Hold down the **shift key** and click ferrocene carboxamide.

4. Type ferrocene methylamine. Hold down the **Control key** and click ferrocene methylamine. Click the Transfer button.

5. Edit the query to include wildcards as shown below.
Exercise IV

Use the **Molecular Formula** field to find substances containing cobalt, 10-15 carbons, 10-30 Hydrogens, 1-3 Nitrogens and anything else.

1. Type the following into the **Molecular Formula** field on the Names & Formulas form: $c(10-20)h(10-30)Co^+$

 - Chemical Name
 - Molecular Formula

2. Click **Search**.
<table>
<thead>
<tr>
<th>Exercise V</th>
<th>Draw a Cp query</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Draw a query that will include 2 cp rings bonded to either La, Mo, or Cr in the results. The metal can have one additional ligand bonded to O, Si, or P via a single or double bond. Draw the parent and use atom and bond query features as needed.</td>
</tr>
</tbody>
</table>

<p>| 1. | In MarvinSketch, click the cyclopentane template and then click in the drawing area twice. |
| 2. | Click the Structure Selection tool and click an atom in one of the structures. Hold down the Shift key and click an atom in the other structure. |
| 3. | Select: Object>Bond>Type>Single or Double |
| 4. | Click the C Atom tool. Click in the middle of the 2 structures. |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5. Click the Bond tool and click an atom in a ring. Repeat until you’ve added 5 bonds to each structure.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Use the Lasso Select tool and click an atom on one of the bonds. Drag the bond until it reaches the carbon in the middle of the 2 structures. Repeat with the remaining bonds.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Click the More button. Click the Atom List button and select Mo, Cr, and La. Click Close. Then click the C in the middle.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8. Click the **Bond tool** and click the “L” for the Atom List to add the bond.

9. Use the **Select tool** to right click the new bond and then select **Edit Bond>type>Any**.

10. Click the atom at the end of the bond, click the **More** button, and add **P**, **Si**, and **O** as in **Step 7**.

11. Click **Transfer Query**. Select **As Drawn**, and click **Search**.
<table>
<thead>
<tr>
<th>Exercise VI</th>
<th>Grubb’s Catalysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Click the More button. Select Ru. Select Close and then click in the drawing area.</td>
<td>Draw a query to retrieve first and second generation Grubb’s Catalysts.</td>
</tr>
<tr>
<td>2. Click the single bond tool, click the Ru and drag and draw 5 bonds.</td>
<td></td>
</tr>
<tr>
<td>3. Use the Select tool to right click one of the bonds and then select Edit Bond>type>Any.</td>
<td></td>
</tr>
<tr>
<td>4. Then click the Reaxys Generics button, click X, and click 2 of the atoms on the structure.</td>
<td></td>
</tr>
</tbody>
</table>
| ![Atom list](image)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Use the Select tool to click one of the atoms, click the More button, click the Atom List button, and select C and P. Click Close. Repeat with the remaining atom, using O and P as the atom list.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6. Click Transfer Query. Select Substructure on All Atoms, and click Search.</td>
</tr>
<tr>
<td>Practice Exercises – Find Coordination Complexes</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Exercise VII</td>
</tr>
<tr>
<td>Find coordination complexes involving the heteroatoms of Salen and a metal. Allow a substituted methyl to appear on any location of the 2 rings.</td>
</tr>
</tbody>
</table>

1. Click the **Generate Structure from Name** button. Type in *salen*. Click **Submit**.
 - **Enter a chemical name and click Submit**
 - **Name:** aspirin
 - **InChI-Key:** B5YNRYMUTXBSQ-UHFFFAOYSA-N
 - **CAS-No:** 50-78-2
 - **Smiles:** `CC(=O)OC1=C(C=CC=C1)C(O)=O`

2. Double click in the structure box to open **MarvinSketch**

3. Use the **Lasso** select tool and select the 4 open atoms.
4. **Right click** and select **Edit Structure>Add>Position Variation Bond.** Repeat with the second ring.

5. Use the **Lasso** select tool and click anywhere in the screen. Type .S6 (in succession, not together) and then select each methyl.

6. Click the **R** button. Select the **M**. Click **Close**. Then click near the structure.
7. Click **Transfer Query**. Select **Substructure on Heteroatoms**.

8. Select **Further Options**. Then type 1 for # of **Fragments**. Click **Search**.
Atom Query Features

Atom Lists – To create an atom list, click the More button. Then click the Atom List button, click the desired elements and the click Close. The list will be visible on the mouse cursor. Click the desired atom in the query to apply the Atom List.

Allow maximum substitution – To open a site to substitution when performing an As Drawn query, click the atom in the query and type .s 6 (period-s-6). [Type the keys one after the other, not together]
(Based on United States keyboard layout)

Block substitution – To block substitution on a site when performing a substructure search, click the atom in the query and type .s* (period-s-asterisk). [Type the keys one after the other, not together]
(Based on United States keyboard layout)

Link Node – To define a range of repeating atoms, use the Lasso Select tool to select the atom to be used as the repeating unit, right-click, and select Edit Atom>Link Node. Then select a number.

Reaxys Generic Groups – To use the metal abbreviation, click an atom in the query, click the R button, and then select M. (For more details about the Reaxys Generic Groups, please see the Reaxys Help file.)

Bond Query Features

Bond type – To allow for different bond types, right-click a bond, and select Edit>Bond>Type. Then select the appropriate option.

Bond topology – To specify retrieval of either a ring bond or a chain bond, right-click the appropriate bond, and select Edit>Bond>Topology. Then select the appropriate option.

Position Variation Bond – To allow specific substitution on a ring without specifying the exact site on the ring, select the atoms in the ring where substitution is allowed. Then select Edit Structure>Add>Position Variation Bond.
For more information please visit

reaxys.com

Americas:
E-Customer Service
(8am-8pm CET - St.Louis)
Tel: US toll-free: +1 (888) 615 4500
Tel: Non toll-free: +1 (314) 523 4900
Email: usinfo@elsevier.com
Email Brazil: brinfo@elsevier.com

Europe and all other regions:
E-Customer Service
(9am-6pm GMT+1, Amsterdam office)
Tel: +31 20 485 3767
Email: nlinfo@elsevier.com

Japan:
E-Customer Service
(9,30am-5,30pm JST, Tokyo office)
Tel: +81 (3) 5561 5035
Email: jpinfo@elsevier.com
Website: japan.elsevier.com

Asia & Pacific:
E-Customer Service
(9am-6pm SST, Singapore office)
Tel: +65 6349 0222
Email: sginfo@elsevier.com